

JOURNAL OF TRANSPORT

ISSUE 1, 2025 vol. 2
E-ISSN: 2181-2438
ISSN: 3060-5164

RESEARCH, INNOVATION, RESULTS

**TOSHKENT DAVLAT
TRANSPORT UNIVERSITETI**
Tashkent state
transport university

JOURNAL OF TRANSPORT
RESEARCH, INNOVATION, RESULTS

**E-ISSN: 2181-2438
ISSN: 3060-5164**

**VOLUME 2, ISSUE 1
MARCH, 2025**

jot.tstu.uz

TASHKENT STATE TRANSPORT UNIVERSITY

JOURNAL OF TRANSPORT

SCIENTIFIC-TECHNICAL AND SCIENTIFIC INNOVATION JOURNAL

VOLUME 2, ISSUE 1 MARCH, 2025

EDITOR-IN-CHIEF

SAID S. SHAUMAROV

Professor, Doctor of Sciences in Technics, Tashkent State Transport University

Deputy Chief Editor

Miraziz M. Talipov

Doctor of Philosophy in Technical Sciences, Tashkent State Transport University

The “Journal of Transport” established by Tashkent State Transport University (TSTU), is a prestigious scientific-technical and innovation-focused publication aimed at disseminating cutting-edge research and applied studies in the field of transport and related disciplines. Located at Temiryo‘lchilar Street, 1, office 465, Tashkent, Uzbekistan (100167), the journal operates as a dynamic platform for both national and international academic and professional communities. Submissions and inquiries can be directed to the editorial office via email at jot@tstu.uz.

The Journal of Transport showcases groundbreaking scientific and applied research conducted by transport-oriented universities, higher educational institutions, research centers, and institutes both within the Republic of Uzbekistan and globally. Recognized for its academic rigor, the journal is included in the prestigious list of scientific publications endorsed by the decree of the Presidium of the Higher Attestation Commission No. 353/3 dated April 6, 2024. This inclusion signifies its role as a vital repository for publishing primary scientific findings from doctoral dissertations, including Doctor of Philosophy (PhD) and Doctor of Science (DSc) candidates in the technical and economic sciences.

Published quarterly, the journal provides a broad spectrum of high-quality research articles across diverse areas, including but not limited to:

- Economics of Transport
- Transport Process Organization and Logistics
- Rolling Stock and Train Traction
- Research, Design, and Construction of Railways, Highways, and Airfields, including Technology
- Technosphere Safety
- Power Supply, Electric Rolling Stock, Automation and Telemechanics, Radio Engineering and Communications
- Technological Machinery and Equipment
- Geodesy and Geoinformatics
- Automotive Service
- Air Traffic Control and Aircraft Maintenance
- Traffic Organization
- Railway and Road Operations

The journal benefits from its official recognition under Certificate No. 1150 issued by the Information and Mass Communications Agency, functioning under the Administration of the President of the Republic of Uzbekistan. With its E-ISSN 2181-2438, ISSN 3060-5164 the publication upholds international standards of quality and accessibility.

Articles are published in Uzbek, Russian, and English, ensuring a wide-reaching audience and fostering cross-cultural academic exchange. As a beacon of academic excellence, the "Journal of Transport" continues to serve as a vital conduit for knowledge dissemination, collaboration, and innovation in the transport sector and related fields.

Analysis of the algorithm for the operation of anti-repetition, auxiliary final and intermediate relays in the dialing group blocks NM2P and NM2AP, which control two combined shunting traffic lights of the railway automation and telemechanics system

J.F. Juraev^{1,2}a, A.R. Azizov²b

¹Trans Engineering Group LLC, Tashkent, Uzbekistan

²Tashkent state transport university, Tashkent, Uzbekistan

Abstract:

The article analyzes automation and telemechanics systems, as well as signaling, centralization and communication devices at railway stations. The question of improvement of group dialing blocks (NM2P and NM2AP) controlling two combined shunting traffic lights of the "BMRM" system, which is considered to be one of the systems of railway automation and telemechanics, i.e. creation of their microprocessor variant, is considered. At the same time algorithms are being developed and software is being created for each working circuit of anti-repeat, auxiliary final and intermediate relays. It is planned to create a prototype of the above-mentioned NM2P and NM2AP units based on the developed software and industrial controllers.

Keywords:

relay, relay system, route, shunting traffic light, electromechanical, microprocessor system, microelectronic, microcontroller, PLC industrial controllers

1. Introduction

Today the introduction of modern and energy-efficient technologies and devices in all industries is one of the urgent tasks.[4] In this regard, it is also worth noting that the introduction of new and modern centralization systems based on microprocessors does not always increase economic efficiency, because of the high cost of such systems requires a long time for their payback.[11] However, when creating modern centralization systems, one of the most alternative solutions is to use the existing architecture and algorithm of BMRM system operation, proven in production for years. In addition, it is much easier and more cost-effective to modernize an existing system piecemeal than to upgrade it completely[6].

2. Methodology and empirical analysis

In the BMRM system, the anti-repetition relays OP, PP and MP, the auxiliary intermediate relay VP, the final VK and VKM are considered second-stage relays and are energized from the direction circuits through the contacts of the push-button relay. The power is supplied from the end of the circuit depending on the type and direction of the route, which is determined by pressing the start button.[8] These relays remain energized until the route is fully established. They, in turn, energize the automatic push-button relay (second circuit), which turns off the push-button relay (first circuit), and the relay controlling the arrow relay (third circuit).[1]

The anti-repetition relay determines the start of the route and its type in route dialing schemes.

These include:

- PP -train route anti-repetition relay;

- OP -general anti-repetition relay;
- MP – shunting route anti-repetition relay.

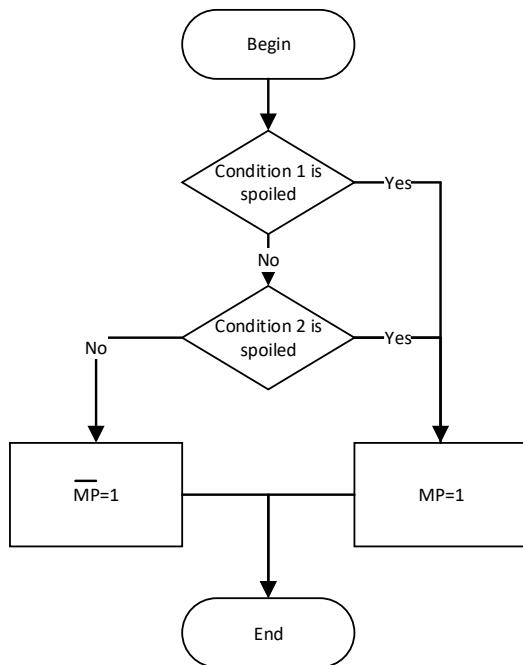
The shunting route anti-repetition relay MP is installed in the blocks of the shunting traffic lights NMI, NM2P, NM2AP.[9] In the block of the NPM train traffic lights, two anti-repetition relays OP and PP are installed. The general anti-repetition relay OP operates on train and shunting routes, while the PP relay operates only on train routes.

The anti-repetition relay contacts are involved in switching on the starting (compliance scheme - the fourth chain of the route set), the control section (the first chain of the execution schemes) and the signal relay (the second chain of the execution schemes).

In order to develop a modern microprocessor version of the dialing group block HM2II, which controls two combined shunting traffic lights, we analyze the scheme and operation algorithm of the auxiliary final and intermediate relays in the block.[5] When setting a route from an optional M signal controlled by the NM2P block, power is supplied to the NM or CHM bus and the MP relay in the NM2P block switches to the energized state. This is the first condition for the MP relay to switch to the energized state, which is expressed as follows:

1 condition: [(2-14) \wedge KN \wedge MG=1] [MP=1]

After the push-button relay is de-energized, the MP is connected to the supply via a self-locking circuit through its own contact and the back contact of the signal relay, which is expressed as follows:


2 condition: [(1-9) \wedge MP \wedge KN \wedge MG=1] [MG=1]

Based on the above two conditions, the MP relay operation algorithm is as follows:

a <https://orcid.org/0009-0007-7852-6554>

b <https://orcid.org/0000-0002-5652-9611>

Fig. 1. MP relay operation algorithm

When the permitting signal opens at the traffic light on the selected route, the MP relay is de-energized through the signal relay contact.

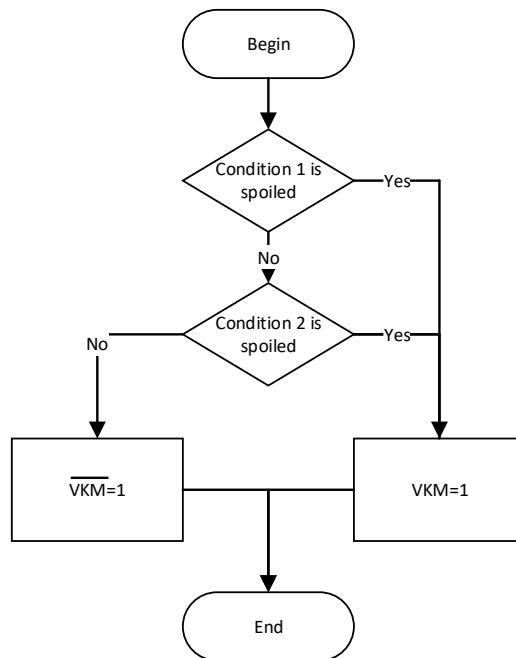
Auxiliary final relays determine:

- VK - the end of the train route.
- VKM - the end of the shunting route

The VKM relay is installed in the NMI, NM2P and NM2AP shunting traffic light blocks. In the NPM block, the VK and VKM relays are installed.[2]

This relay is turned on when the traffic light button on the control device is pressed as a final and serves to turn on the automatic push-button relay (AKN) and the turn signal control relay (PU and MU) circuits, and in the executive group, the final shunting relay is turned on by the VKM relay contacts.

The conditions for switching the VKM relay to the energized state in the NM2P and NM2AP blocks are as follows:

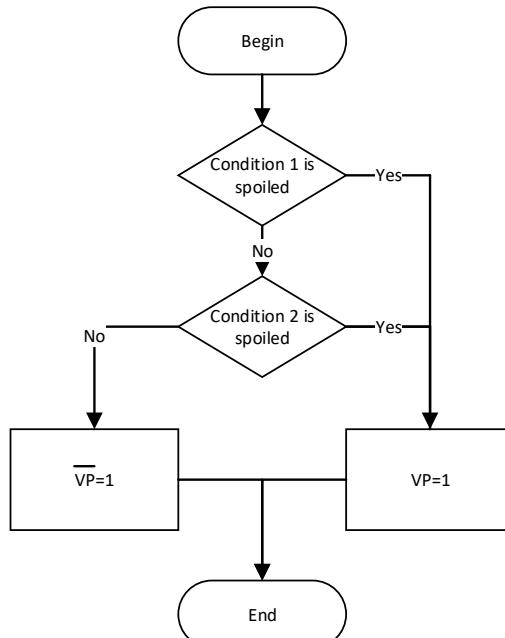

1 condition: $[(2-16) \wedge KN \wedge MG=1] [VKM=1]$

When the push-button relay switches to the de-energized state, the terminating relay locks itself through its contacts and maintains its energized state.

2 condition: $[(2-12) \wedge VKM \wedge KN \wedge MG=1] [VKM=1]$

The auxiliary final relay VKM is de-energized through the locking relay contact after the route is fully installed and electrically locked.

Based on the above conditions, the algorithm for the operation of the VKM relay, which completes the shunting route, can be expressed as follows:


Fig. 2. VKM relay operation algorithm

If the train route does not include shunting traffic lights or the shunting route is formed in the opposite direction, the auxiliary intermediate relay VP is turned on in the blocks controlling these traffic lights (the MP and VKM relays do not work in the blocks).[3] The activation of the push-button relays of both elementary routes is checked through the VP relay circuit. The circuit for switching the VP relay to the energized state is as follows:

1 condition: $[(1-16) \wedge KN \wedge MG=1] [VP=1]$

2 condition: $[(2-12) \wedge VP \wedge KN \wedge MG=1] [VP=1]$

Based on the above conditions, the operation algorithm of the VP auxiliary intermediate relay can be expressed as follows:

Fig. 3. Algorithm of operation of the VP relay

It is possible to upgrade VKM, VP, and MP relays based on electromagnetic relays by introducing a logical sequence of operations into modern industrial controllers based on the above-mentioned operating algorithm.

To do this, the MP relay operating circuit (Figure 4) must be expressed in the ladder programming language used in programming many industrial controllers.

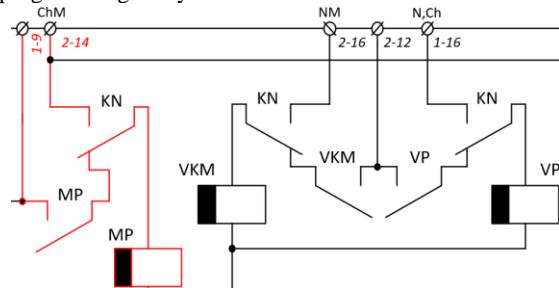


Fig. 4. MP relay operating circuit

3. Results and Discussion

According to the working circuit of the MP relay, for the relay to switch to the energized state, there must be a positive supply at inputs 2-14, the KN relay must be energized, and there must be a negative supply to MG. This sequence is as follows in the ladder programming language. Figure 5.

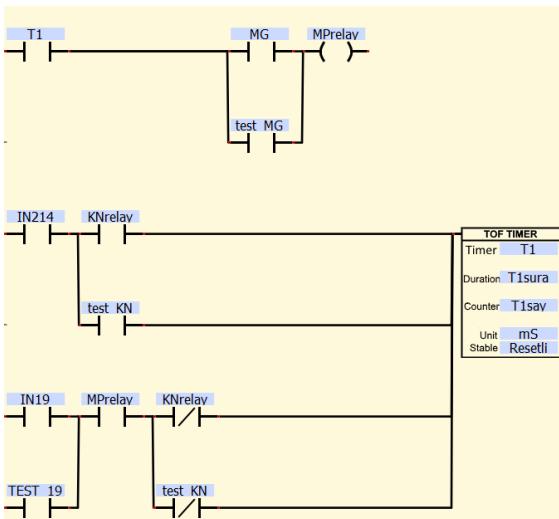


Fig. 5. MP relay software in ladder programming language

The working circuit of the VKM and VP relays (Figure 6) in the ladder programming language is similar to the MP relay program, but there are differences in the inputs and outputs.[7] According to the working circuit and algorithm of the VKM relay, two conditions must be met for the relay to switch to the energized state.[10]

Condition 1: There must be a positive supply at inputs 2-16, the KN relay must be energized and a negative MG supply must be available;

Condition 2: There must be a positive supply at inputs 2-12, the KN relay must be de-energized, the VKM relay must pass through its contact and a negative MG supply must be available;

These sequences are written in ladder programming language as follows. Figure 7.

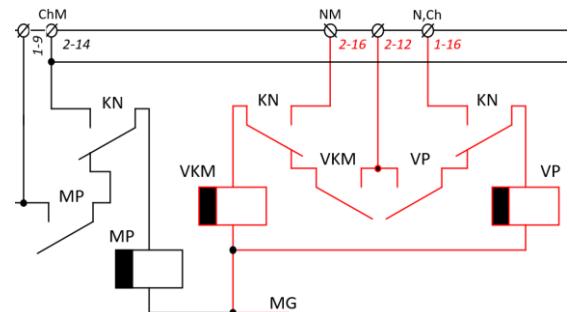


Fig. 6. The working circuit of the VKM and VP relays

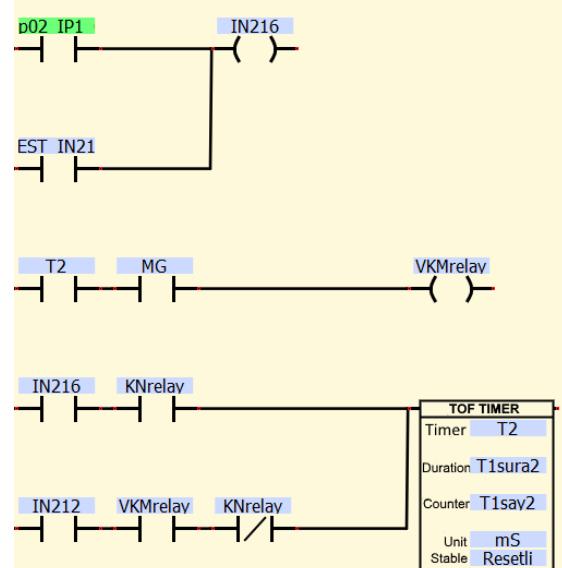


Fig. 7. VKM relay software in ladder programming language

According to the working circuit and algorithm of the VP relay, two conditions must be met for the relay to switch to the energized state. [12]

Condition 1: There must be a positive supply at inputs 1-16, the KN relay must be energized, and the minus MG supply must be available;

Condition 2: There must be a positive supply at inputs 2-12, the KN relay must be de-energized, the VP relay must pass through its contact, and the minus MG supply must be available;

These sequences are as follows in the ladder programming language (Figure 8).

Since the VKM, VP, and MP electromagnetic relays have a delay in de-energizing during de-energizing, a TOF timer is used in the software.

This ensures that the relay remains energized for three seconds when the relay power is disconnected, and during this time it begins to receive power through a self-locking circuit.

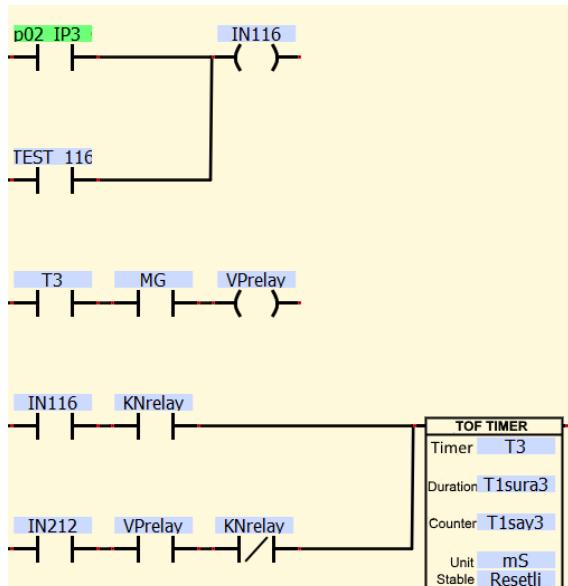


Fig. 8. VKM relay software in ladder programming language

4. Conclusion

The development of the control unit of the two combined shunting traffic lights of the railway automation and telemechanics system, that is, the development of modern industrial controllers, has advantages over existing electromagnetic relay units in terms of energy efficiency, compactness, and the presence of additional functions to expand capabilities. In addition, the development of new technical solutions and the use of modern innovative devices to increase safety and speed of transportation in the railway transport sector are relevant.

References

- [1] Изучения и исследование схем блочный Маршрутно-релейной централизации. Ш.К.Валиев, Р.Ш.Валиев Екатеринбург 2009г. С. 37-39.
- [2] Mikroprotsessori markazlashtirish tizimlari: Temir yo'l transporti texnikumlari va kollejlar talabalarini uchun darslik / V.I.V. Sapojnikov - Moskva: temir yo'l transporti bo'yicha o'quv-uslubiy markaz. transp., 2008 y - 396 b.
- [3] Система МПЦ Simis-W для высокоскоростной линии HSL – Zuid // Железные Дороги Мира. – 2007. – № 10. – С. 69-73.
- [4] TEMIR YO'L AVTOMATIKA VA TELEMECHANIKATIZIMI TERISH GURUHINING STRELKALARINI BOSHQARISH MIKROPROTSESSORLI BLOKI. Dissertatsiya Ametova E.K. Тошкент –2020.

[5] Jo'rayev, J. TEMIR YO'L AVTOMATIKA VA TELEMECHANIKATIZIMI TERISH GURUHINING STRELKALARINI BOSHQARUSHI. Иллюстрации и модели. 3(3), 2024, 107–109.

[6] E.K Ametova, J. F Jo'rayev. Development of the button relay scheme and algorithm of the dial group microprocessor blocks controlling two combined shunting traffic lights of the railway automation and telemechanics system. TASHKENT STATE TRANSPORT UNIVERSITY "JOURNAL OF TRANSPORT" ISSN 2181-2438 VOLUME 1, ISSUE 2 JUNE, 2024. Page (46-50).

[7] Аметова Э.К., Азизов А.Р. Исследование модели цепи кнопочных реле микроэлектронного блока НСС. Мухаммад ал-Хоразмий авлодлари. Мухаммад ал-Хоразмий номидаги Тошкент ахборот технологиялари университети 2019, №3(9) 75-77

[8] A J. F Jo'rayev, E.K Ametova. AUTOMATION AT THE RAILWAY STATIONS OF UZBEKISTAN AND TELEMECHANICS RELAY THE EXPERIENCE OF USING SYSTEMS ANALYTICAL ANALYSIS. «Yosh olimlar» Respublika ilmiy-amaliy konferensiyasining 2024 yil 9(18)-soni.

[9] Сапожников В.В., Никитин А.Б. Микропроцессорная система электрической централизации МПЦ-МПК. Наука и транспорт. – Спб.: Издательский дом ООО «ТПРЕССА», 2009. – С18-21.

[10] ANALYTICAL REVIEW OF THE EXPERIENCE OF USING AUTOMATION DEVICES AT RAILWAY STATIONS IN UZBEKISTAN Jo'rayev J.F., Ametova E.K. Tashkent state transport university (Tashkent, Uzbekistan) The scientific journal vehicles and roads, 2024 №3

[11] Шатковский О.Ю, Чалый Г.Д. Бесконтактный модуль управления стрелочным электроприводом. Автоматика, связь, информатика. – 2011. – № 9. – С. 10–11.

[12] <http://railway.uz/ru/>

[13] <http://scbist.com>

Information about the authors

Juraev Tashkent State Transport University,
Javokhirjon doctoral student, Communications
Farkhodjon Engineer, Trans Engineering Group LLC
ugli Tashkent, Uzbekistan
<https://orcid.org/0009-0007-7852-6554>

Azizov Tashkent State Transport University,
Asadulla Candidate of Technical Sciences,
Rahimovich Professor, Tashkent, Uzbekistan
Department of automation and
telemechanics
<https://orcid.org/0000-0002-5652-9611>

N. Tursunov, A. Kren, T. Tursunov, T. Urazbaev, Sh. Mamaev, U. Rakhimov, J. Bakhtiyorov <i>Basics of developing a model of deformation of elastic-plastic half-space of cast iron</i>	181
G. Khojimatova <i>Research of the architectural face of the roads of the modern city of Andijan</i>	187
S. Ahmedov <i>Development of the general technology of piggyback transportation</i>	192
M. Mahsudov <i>Scientific approach to assessing the business stability of industrial enterprises</i>	198
J. Juraev, A. Azizov <i>Analysis of the algorithm for the operation of anti-repetition, auxiliary final and intermediate relays in the dialing group blocks NM2P and NM2AP, which control two combined shunting traffic lights of the railway automation and telemechanics system</i>	201
I. Siddikov, S. Azamov <i>Research on the reactive power consumption of an asynchronous motor powered by energy generated by solar panels</i>	205