Formation of problems of elastoplastic deformation of three-dimensional bodies
Abstract
Formulation of three-dimensional elastoplastic problems, finite elements in the calculation of bodies with elastoplastic three-dimensional complex shape (with voids, inclusions and cavities), algorithms for using Vlasov-Kantorovich, finite difference methods, calculation of coefficients of the system of solving equations solution algorithms are presented. By employing a combination of theoretical analysis and numerical simulations, we explore the interplay between elastic and plastic behaviors under various loading conditions. The research highlights the significance of material properties, geometric configurations, and boundary conditions in influencing deformation patterns.
References
[2] В. Карпиловский, Метод конечных элементов, Киев: София-А, 2022.
[3] Л.Сегерлинд, Применение метода конечных элементов, Москва: МИР, 1979.
[4] Расулмухамедов М.М, Каримов И.М., “Исследование упругого поведения пространственной коробчатой конструкции,” «Вестник ТашИИТа», vol. 1, no. 1, p. 33, 2005.
[5] В. Власов, Тонкостенные пространственные системы, Москва: Стройиздат, 1958.
[6] В. Власов, Избранные труды, Москва: Наука, 1964.
[7] Н.Г. Сурьянинов, Г.Н. Козолуп, “МЕТОД КАНТОРОВИЧА-ВЛАСОВА В ЗАДАЧЕ ИЗГИБА,” Труды Одесского политехнического университета, vol. 2, no. 1(33), pp. 204-210, 2009.
[8] А. Самарский, Введение в численные методы, Москва: Лань, 2009. Mandal, P., & Somala, S. N. (2020). Periodic pile-soil system as a barrier for seismic surface waves. SN Applied Sciences, 2, 1-8.